A genome-wide mutation analysis method enabling high-throughput identification of chemical mutagen signatures

一种能够高通量识别化学诱变剂特征的全基因组突变分析方法

阅读:8
作者:Shoji Matsumura, Yurika Fujita, Masayuki Yamane, Osamu Morita, Hiroshi Honda

Abstract

Trinucleotide mutational signatures extracted from cancer genomes provide clues useful in understanding the roles of mutagens and mutagenic mechanisms in cancer development. The lack of a simple method for genome-wide analysis of alterations induced by mutagens hampers the identification of trinucleotide signatures of mutagen exposure and evaluation of their relationships with human cancers. Here, we describe a novel approach to facilitate analysis of chemically induced mutations in bacterial cells by detection of increased frequencies of base substitutions after mutagen exposure, using paired-end overlapping next-generation sequencing. DNA samples from Salmonella typhimurium strain TA100, exposed to three alkylating agents, ethylnitrosourea (ENU), methylnitrosourea (MNU), and ethyl methansulphonate (EMS), were analysed. The G:C > A:T mutation frequency was increased in all samples, whereas A:T base pair substitution frequencies were increased specifically in samples exposed to ENU, consistent with previous reports. Mutation patterns in the context of 96 possible trinucleotide formats in these samples exhibited a sharp peak corresponding to an NpCpY consensus sequence, which is similar to the mutational signature of alkylating agents in human cancer. These results indicate that our approach can be useful in facilitating the understanding of mechanisms underlying chemical mutagenicity and for identification of unknown causal mutagens in human cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。