Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics

有丝分裂纺锤体动力学模型中的松弛和噪声驱动的振荡

阅读:11
作者:Dionn Hargreaves, Sarah Woolner, Oliver E Jensen

Abstract

During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。