Baicalin induces cell death of non-small cell lung cancer cells via MCOLN3-mediated lysosomal dysfunction and autophagy blockage

黄芩苷通过 MCOLN3 介导的溶酶体功能障碍和自噬阻断诱导非小细胞肺癌细胞死亡

阅读:19
作者:Xian Dong, Xiyu Liu, Dan Lin, Lian Zhang, Yue Wu, Yuzhen Chang, Mingming Jin, Gang Huang

Background

Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer, becoming the most mortality of all cancers globally. Blockage of autophagy in NSCLC represents a promising therapeutic strategy that inhibits angiogenesis and overcomes drug resistance. Natural ingredients in anti-tumor adjuvants are increasingly reported to promote cell death with less side effects and the potential to increase chemotherapeutic drugs sensitivity. Baicalin, a Scutellaria baicalensis-extracted flavonoid glycoside, is reported to induce death of NSCLC cells, however, its effects on autophagy in NSCLC cells remain unclear.

Conclusion

This study demonstrated that baicalin inhibited autolysosome degradation by activating MCOLN3, leading to dysfunction in lysosomal pH elevation, thereby inhibiting autophagy in NSCLC, leading to apoptotic death of NSCLC cells. These findings enriched the existing theories of cancer therapy based on autophagy inhibition and underlying mechanisms of flavonoids as antitumor agents, paving the way for their clinical application in future.

Methods

In vitro anti-cancer effects of baicalin were verified by evaluating proliferation, clone formation, cell cycle, and cell migration in three NSCLC cell lines (A549, H1299, and PC-9). In vivo anti-tumor efficacies of baicalin were evaluated in subcutaneous xenograft tumor model in nude mice. Autophagy characterization in NSCLC cells included autophagic marker detection by western blot and immunofluorescence staining, subcellular structure observation by TEM, lysosomal function by RNA-seq and fluorescence staining (LysoTracker®, LysoSensor®, and acridine orange). Based on RNA-seq and molecular biological verification using apoptotic, autophagic, and lysosomal inhibitors, potential target molecule of baicalin was verified via Ca2+ flux assay, MCOLN3 knockdown by shRNA, and virtual molecular docking.

Purpose

This study aimed to investigate the effect of baicalin on autophagic flux in NSCLC cells, unraveling the underlying mechanism including potential target and its role in cell death of NSCLC cells.

Results

Baicalin inhibited NSCLC cell proliferation and migration, and suppressed tumor growth in vivo. Baicalin blocked the autophagic flux via activating the membranal cation channel MCOLN3 of lysosome, which disrupted its Ca2+ balance and induced lysosome dysfunction, leading to failure of autolysosome degradation. The cytoplasmic Ca2+ imbalance further resulted in depolarization of mitochondrial membrane potentials and ROS accumulation in NSCLC cells, mediating autophagy-related apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。