Targeting WEE1/AKT Restores p53-Dependent Natural Killer-Cell Activation to Induce Immune Checkpoint Blockade Responses in "Cold" Melanoma

靶向 WEE1/AKT 可恢复 p53 依赖性自然杀伤细胞活化,从而诱导“冷”黑色素瘤中的免疫检查点阻断反应

阅读:5
作者:Saketh S Dinavahi, Yu-Chi Chen, Kishore Punnath, Arthur Berg, Meenhard Herlyn, Momeneh Foroutan, Nicholas D Huntington #, Gavin P Robertson #

Abstract

Immunotherapy has revolutionized cancer treatment. Unfortunately, most tumor types do not respond to immunotherapy due to a lack of immune infiltration or "cold" tumor microenvironment (TME), a contributing factor in treatment failure. Activation of the p53 pathway can increase apoptosis of cancer cells, leading to enhanced antigen presentation, and can stimulate natural killer (NK) cells through expression of stress ligands. Therefore, modulation of the p53 pathway in cancer cells with wild-type TP53 has the potential to enhance tumor immunogenicity to NK cells, produce an inflammatory TME, and ultimately lead to tumor regression. In this study, we report simultaneous targeting of the AKT/WEE1 pathways is a novel and tolerable approach to synergistically induce p53 activation to inhibit tumor development. This approach reduced the growth of melanoma cells and induced plasma membrane surface localization of the ER-resident protein calreticulin, an indicator of immunogenic cell death (ICD). Increase in ICD led to enhanced expression of stress ligands recognized by the activating NK-cell receptor NKG2D, promoting tumor lysis. WEE1/AKT inhibition resulted in recruitment and activation of immune cells, including NK cells, in the TME, triggering an inflammatory cascade that transformed the "cold" TME of B16F10 melanoma into a "hot" TME that responded to anti-programmed cell death protein 1 (anti-PD-1), resulting in complete regression of established tumors. These results suggest that AKT/WEE1 pathway inhibition is a potential approach to broaden the utility of class-leading anti-PD-1 therapies by enhancing p53-mediated, NK cell-dependent tumor inflammation and supports the translation of this novel approach to further improve response rates for metastatic melanoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。