The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway

维生素 D3 通过抑制 TGF-β/Smad 信号传导和激活 Nrf2/HO-1 通路对小鼠哮喘模型发挥保护作用

阅读:6
作者:Zhihui Wang, Haitao Zhang, Xiaohan Sun, Lihong Ren

Abstract

Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma‑associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid‑Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α‑smooth muscle actin (α-SMA) and the activity of the NF‑E2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1) and the transforming growth factor‑β (TGF‑β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA‑induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α‑SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF‑β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA‑challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO‑1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF‑β/Smad signaling and activation of the Nrf2/HO‑1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。