Blockage of transient receptor potential vanilloid 4 prevents postoperative atrial fibrillation by inhibiting NLRP3-inflammasome in sterile pericarditis mice

阻断瞬时受体电位香草酸 4 可通过抑制无菌性心包炎小鼠的 NLRP3 炎症小体预防术后心房颤动

阅读:6
作者:Shuaitao Yang, Zhaoyang Zhao, Ning Zhao, Jie Liao, Yang Lu, Shaoshao Zhang, Kai Lu, Yuwei Wu, Qiongfeng Wu, Qian Dong, Lei Chen, Yimei Du

Abstract

The incidence of atrial fibrillation (AF) increases after surgery and is associated with the activation of NLRP3-inflammation. Our previous studies have found that transient receptor potential vanilloid 4 (TRPV4) blockade reduces the susceptibility to AF, but its molecular mechanisms remains unclear. Therefore, we hypothesized that blockage of TRPV4 reduces the incidence of AF by inhibiting NLRP3-inflammasome in sterile pericarditis (SP) mice. In this study, we established SP mice by dusting talcum powder on atrial surfaces. We first confirmed that genetic or pharmacological TRPV4 inhibition reduced the susceptibility to AF in SP mice. We also found that the expression level of NLRP3-inflammasome and inflammatory cytokines significantly increased in the atria of SP mice, which further increased in application the TRPV4 agonist GSK1016790A (GSK101) and decreased in application the TRPV4 antagonist GSK2193874. More importantly, ERK inhibitor (U0126) or NF-κB inhibitor (Bay11-7082) could partially reverse GSK101-induced NLRP3-inflammasome up-regulation. Interestingly, U0126 can reversed GSK101-induced NF-κB phosphorylation, but Bay11-7082 cannot change GSK101-induced ERK phosphorylation. Finally, we shown that the activation of NLRP3-inflammasome and ERK/NF-κB signaling pathway significantly reduced in TRPV4-knockout SP mice. Collectively, our studies indicate that blockage of TRPV4 prevents AF in SP mice by inhibiting NLRP3-inflammasome through the ERK/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。