Effects of HMGA2 on the epithelial-mesenchymal transition-related genes in ACHN renal cell carcinoma cells-derived xenografts in nude mice

HMGA2对ACHN肾细胞癌裸鼠移植瘤中上皮间质转化相关基因的影响

阅读:6
作者:Ying Liu #, Guangyao Lv #, Jianxin Bai #, Lingling Song, Elizabeth Ding, Lin Liu, Yuqin Tian, Qian Chen, Kai Li, Xianfeng Liu, Yan Ding

Background

The architectural transcriptional regulator high-mobility group AT-hook 2 (HMGA2) is an oncofetal protein which has been reported to be ectopically expressed in a variety of cancers. A high expression of HMGA2 in human renal cell carcinoma (RCC) is related with tumor invasiveness and poor prognosis. Recent in vitro studies have shown that HMGA2 knockdown was able to decrease cell proliferation and migration, and regulate the gene expression related to epithelial-mesenchymal transition (EMT).

Conclusions

In conclusion, to the best of our knowledge, for the first time, we have successfully developed an in vivo experiment using HMGA2-silencing ACHN cells to be grown as xenografts in nude mice. Our findings show that HMGA2 deficiency was sufficient to suppress the xenograft tumor growth in vivo, which support our hypothesis that HMGA2-induced renal carcinogenesis occurs at least in part through the regulation of tumor associated EMT genes.

Methods

To understand the HMGA2's effect in vivo, HMGA2 expression was knocked down in ACHN cells using small hairpin RNA (shRNA), then the HMGA2-deficient ACHN cells were xenografted into the BALB/c nude mice. Tumor growth was monitored and the expression of EMT-related genes was analyzed.

Results

HMGA2 expression was confirmed to be knocked down in the cultured and xenografted ACHN cells. The xenograft tumor of HMGA2-deficient cells demonstrated a retarded growth pattern compared with the control. The expression of E-cadherin was increased, whereas N-cadherin and Snail were decreased in the HMGA2-deficient xenograft tumors. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。