Leptin regulation of core body temperature involves mechanisms independent of the thyroid axis

瘦素调节核心体温涉及独立于甲状腺轴的机制

阅读:5
作者:Jennifer D Deem, Kenjiro Muta, Kayoko Ogimoto, Jarrell T Nelson, Kevin R Velasco, Karl J Kaiyala, Gregory J Morton

Abstract

The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin's role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T3). We report that, as with leptin, normalization of circulating T3 levels is sufficient both to increase energy expenditure, respiratory quotient, and ambulatory activity and to reduce torpor in ob/ob mice. Yet, unlike leptin, infusing T3 at a dose that normalizes plasma T3 levels fails to prevent the fall of core temperature during mild cold exposure. Because thermal conductance (e.g., heat loss to the environment) was reduced by administration of leptin but not T3, leptin regulation of heat dissipation is implicated as playing a uniquely important role in thermoregulation. Together, these findings identify a key role in thermoregulation for leptin-mediated suppression of thermal conduction via a mechanism that is independent of the thyroid axis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。