Significance
We describe the incorporation of β-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show β-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-β1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, β-cyclodextrin modified CG scaffolds promote TGF-β1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.
Statement of significance
We describe the incorporation of β-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show β-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-β1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, β-cyclodextrin modified CG scaffolds promote TGF-β1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.
