Baicalin ameliorates neuropathology in repeated cerebral ischemia-reperfusion injury model mice by remodeling the gut microbiota

黄芩苷通过重塑肠道菌群改善反复脑缺血再灌注损伤模型小鼠的神经病理学

阅读:5
作者:Jianfeng Liu, Tianhua Zhang, Yingying Wang, Chengqing Si, Xudong Wang, Rui-Tao Wang, Zhonghua Lv

Abstract

We investigated the neuroprotective effects of baicalin and the role of gut microbiota in a mouse model of cerebral ischemia-reperfusion injury. Repeated cerebral ischemia-reperfusion significantly increased plasma levels of trimethylamine (TMA), trimethylamine-N-oxide (TMAO), and clusterin (a neuroinflammation biomarker). These changes correlated with cognitive decline; short-term memory deficits; abnormal long term potentiation (LTP); decreased functional connectivity (FC) between various brain regions; reduced plasticity and dendritic spine density in the hippocampus; increased levels of the pro-inflammatory cytokines IL-1β, IL-6, and TNFα; and altered the gut microbial composition. Treatment with 50-100 mg/Kg baicalin for 7 days after cerebral ischemia-reperfusion significantly restored normal plasma levels of TMA, TMAO, and clusterin. Baicalin treatment also suppressed neuroinflammation, remodeled the gut microbial composition back to normal, and improved cognition, memory, LTP, cerebral FC, and hippocampal neuronal plasticity. The neuroprotective effects of baicalin were diminished when mice undergoing repeated cerebral ischemia-reperfusion were pretreated with broad-spectrum antibiotics to deplete gut microbial populations. This suggests the neuroprotective effects of baicalin in cerebral ischemia-reperfusion injury are mediated by the gut microbiota. It thus appears that baicalin ameliorates neuropathology in a repeated cerebral ischemia-reperfusion model mice by remodeling the gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。