β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium

β-arrestin1 通过 Drp1 依赖的线粒体裂变调节星形胶质细胞反应性:对术后谵妄的影响

阅读:5
作者:Fuzhou Hua #, Hong Zhu #, Wen Yu, Qingcui Zheng, Lieliang Zhang, Weidong Liang, Yue Lin, Fan Xiao, Pengcheng Yi, Yanhong Xiong, Yao Dong, Hua Li, Lanran Fang, Hailin Liu, Jun Ying, Xifeng Wang

Abstract

Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients' brain and bio-fluids (CSF and serum), as well as in animal models for POD. β-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that β-arrestin1, one type of β-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using β-arrestin1 knockout (KO) mice, we find aggravating effect of β-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of β-arrestin1 and demonstrate that β-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. β-arrestin1 deletion cancels the combination of β-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using β-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that β-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。