Extracellular vesicles from bone marrow stromal cells reduce the impact of stroke on glial cell activation and blood brain-barrier permeability via a putative miR-124/PRX1 signalling pathway

骨髓基质细胞的细胞外囊泡通过假定的 miR-124/PRX1 信号通路降低中风对神经胶质细胞活化和血脑屏障通透性的影响

阅读:5
作者:Jianan Tian, Haiqian Yao, Yihang Liu, Xiaokun Wang, Jiarong Wu, Jia Wang, Dan Yu, Yibo Xie, Jiaqi Gao, Yulan Zhu, Chunxiao Yang

Abstract

Ischaemic stroke (IS) is a cerebrovascular disease caused by cerebral infarction and cerebral artery occlusion. In this study, we proposed that EVs from bone marrow stromal cells (BMSCs) could reduce the impact of stroke by reducing the resultant glial cell activation and blood-brain barrier (BBB) leak. We furthermore investigated some of the signalling mechanisms. The transient middle cerebral artery occlusion (t-MCAO) mouse model was established. The behavioural deficits and neuronal damage were verified using Bederson's scale and the 28-point neurological score. The area of cerebral infarction was detected. The expressions of astrocytes/microglia markers and BBB permeability were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The internalization of EVs by astrocytes/microglia in the peripheral area was detected by fluorescence labelling. The expressions of astrocyte/microglia markers were measured by RT-qPCR. Levels of TNF-α and IL-1β in microglia were detected by ELISA. BBB permeability was evaluated. The downstream target genes and pathway of miR-124 were analysed. Microglia/astrocytes were treated by oxygen-glucose deprivation reoxygenation (OGD/R). OGD/R microglia/astrocyte conditioned medium was used to culture bEnd.3 cells. The transendothelial electric resistance (TEER) of bEnd.3 cells was measured, and BBB permeability was characterized. Our results suggested that EVs from BMSCs can indeed reduce the extent of stroke-mediated damage and evidenced that these effects are mediated via expression of the non-coding RNA, miR-124 that may act via the peroxiredoxin 1 (PRX1). Our results provided further motivation to pursue the use of modified EVs as a treatment option for neurological diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。