CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells

CRISPR-Cas9 筛选揭示嘌呤合成对乳腺癌细胞雌激素受体 α 活性和他莫昔芬耐药性的作用

阅读:8
作者:Dina Hany, Vasiliki Vafeiadou, Didier Picard

Abstract

In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。