Fitness of Isidorella newcombi Following Multi-generational Cu Exposures: Mortality, Cellular Biomarkers and Life History Responses

多代铜暴露后 Isidorella newcombi 的适应性:死亡率、细胞生物标志物和生活史反应

阅读:7
作者:R P Ubrihien, W A Maher, A M Taylor, M M Stevens, T Ezaz

Abstract

The effects of multigenerational Cu exposure on the freshwater gastropod Isidorella newcombi were investigated. Snails were exposed to a range of treatment-specific Cu concentrations in the parental to F2 generations, and a common Cu concentration in the F3 generation. In the parental to F2 generations, some general responses to 3 days Cu exposures included reduced survival and feeding in snails exposed to higher Cu concentrations. This suggested that the snails exposed to the high Cu concentration were experiencing Cu-induced stress that may apply selection pressure. In the F3 generation, when all treatments were exposed to a common Cu concentration, increased survival was correlated with the pre-exposure Cu concentration history. Snails that had been pre-exposed to Cu also displayed reduced stress at a sub-lethal level, indicated by lower lysosomal destabilisation (LD). Mortality and LD responses in the F3 generation were not related to Cu tissue concentrations, indicating increased tolerance and reduced stress were not related to changes in Cu bioaccumulation. Total antioxidant capacity increased in the higher Cu concentration pre-exposure treatments which could be associated with lower Cu-induced stress, however, this is not supported by the oxidative damage marker lipid peroxidation, which also increased. While Cu tissue concentrations and oxidative stress markers were assessed to determine underlying reasons for increased tolerance in snails from a population with a multi-generational exposure history to Cu, the results were not conclusive. Despite this, it was demonstrated through increased survival and reduced LD that Cu tolerance can develop over a short evolutionary time scale.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。