The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates

关键稳定性任务:量化非人类灵长类动物持续运动过程中的感觉运动控制

阅读:7
作者:Kristin M Quick, Jessica L Mischel, Patrick J Loughlin, Aaron P Batista

Abstract

Everyday behaviors require that we interact with the environment, using sensory information in an ongoing manner to guide our actions. Yet, by design, many of the tasks used in primate neurophysiology laboratories can be performed with limited sensory guidance. As a consequence, our knowledge about the neural mechanisms of motor control is largely limited to the feedforward aspects of the motor command. To study the feedback aspects of volitional motor control, we adapted the critical stability task (CST) from the human performance literature (Jex H, McDonnell J, Phatak A. IEEE Trans Hum Factors Electron 7: 138-145, 1966). In the CST, our monkey subjects interact with an inherently unstable (i.e., divergent) virtual system and must generate sensory-guided actions to stabilize it about an equilibrium point. The difficulty of the CST is determined by a single parameter, which allows us to quantitatively establish the limits of performance in the task for different sensory feedback conditions. Two monkeys learned to perform the CST with visual or vibrotactile feedback. Performance was better under visual feedback, as expected, but both monkeys were able to utilize vibrotactile feedback alone to successfully perform the CST. We also observed changes in behavioral strategy as the task became more challenging. The CST will have value for basic science investigations of the neural basis of sensory-motor integration during ongoing actions, and it may also provide value for the design and testing of bidirectional brain computer interface systems. NEW & NOTEWORTHY Currently, most behavioral tasks used in motor neurophysiology studies require primates to make short-duration, stereotyped movements that do not necessitate sensory feedback. To improve our understanding of sensorimotor integration, and to engineer meaningful artificial sensory feedback systems for brain-computer interfaces, it is crucial to have a task that requires sensory feedback for good control. The critical stability task demands that sensory information be used to guide long-duration movements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。