Helicobacter pylori Infection in Infant Rhesus Macaque Monkeys is Associated with an Altered Lung and Oral Microbiome

婴儿恒河猴的幽门螺杆菌感染与肺部和口腔微生物群的改变有关

阅读:6
作者:Noah A Siegel, Monica T Jimenez, Clarissa Santos Rocha, Matthew Rolston, Satya Dandekar, Jay V Solnick, Lisa A Miller

Background

It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development.

Conclusions

We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.

Results

From a cohort of 4-7-month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In relative order of abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. Relative to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. Conclusions: We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。