A novel and effective inhibitor combination involving bortezomib and OTSSP167 for breast cancer cells in light of label-free proteomic analysis

基于无标记蛋白质组学分析的针对乳腺癌细胞的新型有效抑制剂组合——硼替佐米和 OTSSP167

阅读:6
作者:Emrah Okur, Azmi Yerlikaya

Conclusions

Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.

Purpose

The 26S proteasome plays important roles in many intracellular processes and is therefore a critical intracellular cellular target for anticancer treatments. The primary aim of the current study was to identify critical proteins that may play roles in opposing the antisurvival effect of the proteasome inhibitor bortezomib together with the calcium-chelator BAPTA-AM in cancer cells using label-free LC-MS/MS. In addition, based on the

Results

Using label-free LC-MS/MS, it was found that expressions of 1266 proteins were significantly changed between the experimental groups. Among these proteins were cell division cycle 5-like (Cdc5L) and drebrin-like (DBNL). We then hypothesized that inhibition of the activities of these two proteins may lead to more effective anticancer inhibitor combinations in the presence of proteasomal inhibition. In fact, as presented in the current study, Cdc5L phosphorylation inhibitor CVT-313 and DBNL phosphorylation inhibitor OTSSP167 were highly cytotoxic in 4T1 breast cancer cells and their IC50 values were 20.1 and 43 nM, respectively. Under the same experimental conditions, the IC50 value of BAPTA-AM was found 19.9 μM. Using WST 1 cytotoxicity assay, it was determined that 10 nM bortezomib + 10 nM CVT-313 was more effective than the control, the single treatments, or than 5 nM bortezomib + 5 nM CVT-313. Similarly, 10 nM bortezomib + 10 nM OTSSP167 was more cytotoxic than the control, the monotherapies, 5 nM bortezomib + 5 nM OTSSP167, or than 5 nM bortezomib + 10 nM OTSSP167, indicating that bortezomib + OTSSP167 was also more effective than bortezomib + CVT-313 in a dose-dependent manner. Furthermore, the 3D spheroid model proved that bortezomib + OTSSP167 was more effective than the monotherapies as well as bortezomib + CVT-313 and bortezomib + BAPTA-AM combinations. Finally, the effect of bortezomib + OTSSP167 combination was tested on MDA-MB-231 breast cancer cells, and it similarly determined that 20 nM bortezomib +40 nM OTSSP167 combination completely blocked the formation of 3D spheroids. Conclusions: Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。