AKR1B1 Upregulation Contributes to Neuroinflammation and Astrocytes Proliferation by Regulating the Energy Metabolism in Rat Spinal Cord Injury

AKR1B1 上调通过调节大鼠脊髓损伤中的能量代谢导致神经炎症和星形胶质细胞增殖

阅读:7
作者:Xiaoqing Chen, Cheng Chen, Jie Hao, Rongqing Qin, Baiyu Qian, Kai Yang, Jiyun Zhang, Feng Zhang

Abstract

Spinal cord injury (SCI) is one of the most common and serious condition, which leads to permanent neurological dysfunction and poor prognosis in patients. Hyperglycemia impairs neural functional recovery after SCI resulting in the overproduction of reactive oxygen species (ROS) and inflammatory cytokines. However, the effect of glucose metabolism in the spinal cord after injury remains unclear. AKR1B1, one member of the aldo/keto reductase superfamily, is involved in the energy metabolism of plasm glucose and ROS production. The role of AKR1B1 in cancer cell proliferation and invasion has been confirmed. Meanwhile, Akt, one pivotal transcription factor particularly, is involved in the regulation of cell cycle and ROS-mediated secondary injury in the lesion site. In our study, we established an acute SCI rat model to identify the expression of AKR1B1 and its role in neural recovery processes. Western blotting revealed the expression of AKR1B1 protein was elevated after injury, peaked at 3 days and declined gradually to normal at 14 days. Similar results was illustrated in immunohistochemistry staining of white matter. Double immunofluorescence staining showed AKR1B1 was expressed in glial cells and its expression was significantly increased in proliferative astrocytes during the pathological processes. Further experiments showed AKR1B1 was co-located with Akt protein in GFAP positive cells and immunoprecipitated with Akt in injured spinal cord as well. In summary, the present study demonstrated AKR1B1 played a vital role in astrocytes proliferation through Akt pathway, associated with the metabolism of hyperglycemia induced by SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。