miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease

miR-181a 负向调节海马培养物中的突触可塑性,而抑制 miR-181a 可挽救阿尔茨海默病小鼠模型中的记忆缺陷

阅读:5
作者:Carlos J Rodriguez-Ortiz, Gilberto Aleph Prieto, Alessandra C Martini, Stefania Forner, Laura Trujillo-Estrada, Frank M LaFerla, David Baglietto-Vargas, Carl W Cotman, Masashi Kitazawa

Abstract

MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA-181a (miR-181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity-related proteins at synapses. We have previously demonstrated that miR-181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity-related proteins. Here, we further investigated the underlying mechanisms by which miR-181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity-dependent upregulation of the microRNA-regulating protein, translin, correlated with reduction of miR-181a upon chemical long-term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR-181a, and other plasticity-related proteins. Additionally, Aβ treatment inhibited cLTP-dependent induction of translin and subsequent reduction of miR-181a, and cotreatment with miR-181a antagomir effectively reversed the effects elicited by Aβ but did not rescue translin levels, suggesting that the activity-dependent upregulation of translin was upstream of miR-181a. In mice, a learning episode markedly decreased miR-181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR-181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg-AD model. Taken together, our results indicate that miR-181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aβ disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。