Modulating IgG effector function by Fc glycan engineering

通过 Fc 糖链工程调节 IgG 效应功能

阅读:8
作者:Tiezheng Li, David J DiLillo, Stylianos Bournazos, John P Giddens, Jeffrey V Ravetch, Lai-Xi Wang

Abstract

IgG antibodies contain a conserved N-glycosylation site on the Fc domain to which a complex, biantennary glycan is attached. The fine structures of this glycan modulate antibody effector functions by affecting the binding affinity of the Fc to diverse Fc receptor family members. For example, core fucosylation significantly decreases antibody-dependent cellular cytotoxicity (ADCC), whereas terminal α2,6-sialylation plays a critical role in the anti-inflammatory activity of human i.v. immunoglobulin therapy. The effect of specific combinations of sugars in the glycan on ADCC remains to be further addressed, however. Therefore, we synthesized structurally well-defined homogeneous glycoforms of antibodies with different combinations of fucosylation and sialylation and performed side-by-side in vitro FcγR-binding analyses, cell-based ADCC assays, and in vivo IgG-mediated cellular depletion studies. We found that core fucosylation exerted a significant adverse effect on FcγRIIIA binding, in vitro ADCC, and in vivo IgG-mediated cellular depletion, regardless of sialylation status. In contrast, the effect of sialylation on ADCC was dependent on the status of core fucosylation. Sialylation in the context of core fucosylation significantly decreased ADCC in a cell-based assay and suppressed antibody-mediated cell killing in vivo. In contrast, in the absence of fucosylation, sialylation did not adversely impact ADCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。