Most dystrophic neurites in the common 5xFAD Alzheimer mouse model originate from axon terminals

常见 5xFAD 阿尔茨海默病小鼠模型中的大多数营养不良神经突源自轴突末端

阅读:7
作者:R Mabrouk, P O Miettinen, H Tanila

Abstract

How dystrophic neurites form around amyloid plaques is a key aspect of understanding the early pathophysiology of Alzheimer's disease. At present, three hypotheses prevail: (1) dystrophies result from extracellular amyloid-beta (Aβ) toxicity; (2) dystrophies results from accumulation of Aβ into distal neurites; and (3) dystrophies represent blebbing of the somatic membrane of a neuron with high Aβ load. We utilized a unique feature of the common 5xFAD AD mouse model to test these hypotheses. Cortical layer 5 pyramidal neurons show intracellular APP and Aβ accumulation before amyloid plaque formation while dentate granule cells in these mice show no APP accumulation at any age. However, the dentate gyrus shows amyloid plaques by 3 months of age. By a careful confocal microscopic analysis we found no evidence of severe degeneration in amyloid laden layer 5 pyramidal neurons in contrast to hypothesis 3. Using injecting red fluorescent marker into lateral entorhinal projection neurons in 5xFAD mice with endogenous green fluorescent protein (GFP) in dentate granule cells we could demonstrate that all dystrophies is outer molecular layer originate from the axon terminal of entorhinal projection neurons. Immunostaining with vesicular glutamate transporter supported the axonal nature of the dystrophies in the acellular dentate molecular layer. We observed few small dystrophies in the GFP labeled granule cell dendrites. In general GFP labeled dendrites appear normal around the amyloid plaques. These findings favor hypothesis 2 as the most likely mechanism of dystrophic neurite formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。