Correlating the mass and mechanical property changes during the degradation of PEG-based adhesive

关联 PEG 基粘合剂降解过程中的质量和机械性能变化

阅读:8
作者:Zhongtian Zhang, Rattapol Pinnaratip, Keat G Ong, Bruce P Lee

Abstract

Change in mechanical property of a degrading adhesive is critical to its performance. However, characterization of degradation behavior is often limited to tracking its mass loss. 4-armed PEG end modified with dopamine (PEG-DA) was used as a model bioadhesive to correlate its change in mass with change in mechanical property. Shear modulus (G) was calculated based on the mass and average molecular weight between crosslinks (¯¯¯¯Mc)(M¯c)<math> <mrow><mrow><mo>(</mo> <mrow> <msub><mover><mi>M</mi> <mo>¯</mo></mover> <mi>c</mi></msub> </mrow> <mo>)</mo></mrow> </mrow> </math> of PEG-DA, while the storage modulus (G') was determined by oscillatory rheometry. G decreased slowly within the first week of degradation (10% reduction by week 2), while G' decreased by 60% during the same period. This large discrepancy is due to the partially disconnected and elastically ineffective PEG polymer, which is trapped within the adhesive network. This resulted in minimal mass change and higher calculated G value during the earlier time points. Therefore, tracking mass loss profile alone is inadequate to completely describe the degradation behavior of an adhesive. Additionally, PEG-DA was coated onto magnetoelastic (ME) sensors, and the change in the resonance amplitude of the sensor corresponded well with dry mass loss of PEG-DA. ME sensing provide a non-destructive method to track the mass loss of the coated adhesive.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。