Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures

探索莱茵衣藻中的 N-糖基化途径揭示新的复合结构

阅读:3
作者:Elodie Mathieu-Rivet, Martin Scholz, Carolina Arias, Flavien Dardelle, Stefan Schulze, François Le Mauff, Gavin Teo, Ana Karina Hochmal, Amaya Blanco-Rivero, Corinne Loutelier-Bourhis, Marie-Christine Kiefer-Meyer, Christian Fufezan, Carole Burel, Patrice Lerouge, Flor Martinez, Muriel Bardor, Micha

Abstract

Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。