XPD-dependent activation of apoptosis in response to triplex-induced DNA damage

XPD 依赖性激活细胞凋亡以响应三链诱导的 DNA 损伤

阅读:3
作者:Meetu Kaushik Tiwari, Faye A Rogers

Abstract

DNA sequences capable of forming triplexes are prevalent in the human genome and have been found to be intrinsically mutagenic. Consequently, a balance between DNA repair and apoptosis is critical to counteract their effect on genomic integrity. Using triplex-forming oligonucleotides to synthetically create altered helical distortions, we have determined that pro-apoptotic pathways are activated by the formation of triplex structures. Moreover, the TFIIH factor, XPD, occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. Here, we show that triplexes are capable of inducing XPD-independent double strand breaks, which result in the formation of γH2AX foci. XPD was subsequently recruited to the triplex-induced double strand breaks and co-localized with γH2AX at the damage site. Furthermore, phosphorylation of H2AX tyrosine 142 was found to stimulate the signaling pathway of XPD-dependent apoptosis. We suggest that this mechanism may play an active role in minimizing genomic instability induced by naturally occurring noncanonical structures, perhaps protecting against cancer initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。