The protective effects of azilsartan against oscillatory shear stress-induced endothelial dysfunction and inflammation are mediated by KLF6

阿齐沙坦对振荡剪切应力引起的内皮功能障碍和炎症的保护作用由 KLF6 介导

阅读:6
作者:Guoqian Wei, Dayong Zhu, Yongtao Sun, Lan Zhang, Xian Liu, Ming Li, Jinxia Gu

Background and purpose

Atherosclerosis is a common cardiovascular disease with high morbidity and mortality. It is reported to be related to oscillatory shear stress (OSS)-induced endothelial dysfunction and excessive production of inflammatory factors. Azilsartan, a specific antagonist of the angiotensin II receptor, has been approved for the management of hypertensive subjects with diabetes mellitus type II (DMII). The present study will investigate the effects of azilsartan against OSS-induced endothelial dysfunction and inflammation, as well as the underlying mechanism. Materials and

Conclusion

The protective effects of azilsartan against OSS-induced endothelial dysfunction and inflammation might be mediated by KLF6.

Methods

Cell viability was detected using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were used to determine the expression levels of IL-6, TNF-α, IL-1β, VCAM-1, and ICAM-1 in human aortic endothelial cells (HAECs). Generation of reactive oxygen species (ROS) was measured using 2'-7'dichlorofluorescin diacetate (DCFH-DA) staining, and the level of reduced glutathione (GSH) was evaluated using a commercial kit. The adhesion of THP-1 monocytes to HAECs was evaluated using calcein-AM staining. The expression level of KLF6 was determined using qRT-PCR and Western blot analysis.

Purpose

Atherosclerosis is a common cardiovascular disease with high morbidity and mortality. It is reported to be related to oscillatory shear stress (OSS)-induced endothelial dysfunction and excessive production of inflammatory factors. Azilsartan, a specific antagonist of the angiotensin II receptor, has been approved for the management of hypertensive subjects with diabetes mellitus type II (DMII). The present study will investigate the effects of azilsartan against OSS-induced endothelial dysfunction and inflammation, as well as the underlying mechanism. Materials and

Results

According to the result of the MTT assay, 5 and 10 μM azilsartan were considered as the optimized concentrations applied in the present study. The elevated production of IL-6, TNF-α, and IL-1β, increased levels of ROS, decreased levels of reduced GSH, upregulated VCAM-1, ICAM-1, and E-selectin, and the aggravated adhesion of THP-1 cells to HAECs induced by OSS were all reversed by the introduction of azilsartan. The downregulation of KLF6 induced by OSS was significantly reversed by azilsartan. By knocking down the expression of KLF6, the suppressed adhesion of THP-1 cells to the HAECs, and the downregulation of VCAM-1 and ICAM-1 induced by azilsartan in OSS-stimulated HAECs were greatly reversed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。