Establishment of an organ culture system to induce Sertoli cell differentiation from undifferentiated mouse gonads

建立诱导小鼠未分化生殖腺塞托利细胞分化的器官培养体系

阅读:7
作者:Chinatsu Hasegawa, Toshifumi Yokoyama, Yuria Umemura, Kohei Kawanishi, Yuuka Miura, Nanako Takada, Shuji Ohno, Kanoko Onaru, Takuya Omotehara, Tetsushi Hirano, Yohei Mantani, Takanori Miki, Nobuhiko Hoshi

Abstract

Organ culture systems are useful for elucidating the process of testicular differentiation from mammalian undifferentiated genetically male gonads, as they permit various experiments, including experiments involving the control of gene expression. However, without addition of testicular differentiation-related factors, it is difficult to induce the formation of testis cord from immature gonads by a time point earlier 12 tail somites (ts) that corresponding to 11.0 days post coitum (dpc). In this study, we attempted to establish an organ culture system that induces testis formation from immature gonads (around 8 ts: 10.5 dpc) just before Sry (sex-determining region of the Y chromosome) expression. A paired gonad-mesonephros complex of around 8 ts was placed in the groove of an agarose gel block and put the semi-cylindrical piece of agarose gel to maintain the gonad morphology. The gonads were cultured in the gas phase for 96 hr. As a result, testis cord-like structures appeared in many genetically male gonads. Cells expressing the Sertoli cell markers Sox9 (SRY-box 9) and Amh (anti-Müllerian hormone) were observed, while granulosa cell marker Foxl2 (forkhead box L2) was not detected. In addition, Sox9- and Amh-expressing cells were observed throughout the entire gonad in many individuals. Amh mRNA expression was also upregulated. Surprisingly, formation of a partial testicular structure was observed from more immature gonads (6 ts). These results show that our gonadal organ culture system is useful for elucidating the regulation mechanism of Sry expression in undifferentiated bipotential gonads.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。