Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway

蓼科植物通过激活MAPK/ERK信号通路减轻心肌缺血损伤

阅读:8
作者:Changli Fu, Mingjin Wang, Yuan Lu, Jie Pan, Yueting Li, Yongjun Li, Yonglin Wang, Aimin Wang, Yong Huang, Jia Sun, Chunhua Liu

Abstract

Although Polygonum orientale L. (PO) has a beneficial effect on treatment of myocardial ischemia (MI), its mechanism remains unclear. This study aimed to explore the pharmacological mechanism of PO against MI through MAPK signaling pathways. Firstly, the therapeutic effect of PO was evaluated for treatment of MI mice. Using Western blot and immunohistochemistry, the influence of PO on MAPK signaling pathways and cell apoptosis was investigated. Subsequently, one key pathway (ERK) of MAPK signaling pathways was screened out, on which PO posed the most obvious impact. Finally, an inhibitor of ERK1/2 was utilized to further verify the regulatory effect of PO on the MAPK/ERK signaling pathway. It was found that PO could reduce the elevation of the ST segment; injury of heart tissue; the activity of LDH, CK, NOS, cNOS and iNOS and the levels of NO, BNP, TNF-α and IL-6. It is notable that PO could significantly modulate the protein content of p-ERK/ERK in mice suffering from MI but hardly had an effect on p-JNK/JNK and p-p38/p38. Additionally, the expressions of bax, caspase3 and caspase9 were inhibited in heart tissue in the PO-treated group. To evaluate whether ERK1/2 inhibitor (PD98059) could block the effect of PO on treatment of MI, both PO and PD98059 were given to mice with MI. It was discovered that the inhibitor indeed could significantly reverse the regulatory effects of PO on the above indicators, indicating that PO could regulate p-ERK/ERK. This study provides experimental evidence that PO extenuates MI injury, cardiomyocyte apoptosis and inflammation by activating the MAPK/ERK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。