Chalcone-Derived Lactones: Synthesis, Whole-Cell Biotransformation, and Evaluation of Their Antibacterial and Antifungal Activity

查尔酮衍生内酯:合成、全细胞生物转化及其抗菌和抗真菌活性评估

阅读:5
作者:Witold Gładkowski, Monika Siepka, Barbara Żarowska, Agata Białońska, Barbara Gawdzik, Mariusz Urbaniak, Czesław Wawrzeńczyk

Abstract

Four compounds with lactone moiety were synthesized from chalcone 1 in three- or four-step synthesis. γ-Bromo-δ-lactone 5 was the only product of bromolactonization of acid 4 whereas bromolactonization of ester 3, apart from lactone 5 also afforded its isomer 6 and two diastereoisomeric δ-hydroxy-γ-lactones 7 and 8. Lactone 8 was also obtained in 88% yield as a product of simultaneous dehalogenation and translactonization of γ-bromo-δ-lactone 5 by Penicillum frequentans AM 359. Chalcone-derived lactones 5-8 were subjected to the tests on antimicrobial activity and the results compared with activity of starting chalcone 1. Obtained lactones 5-8 in most cases limited the growth of tested bacterial and fungal strains. The highest activity was found for δ-hydroxy-γ-lactone 8 which completely inhibited the growth of Staphylococcus aureus, Fusarium graminearum, Aspergillus niger, and Alternaria sp. The introduction of lactone moiety into chalcone scaffold significantly improved antimicrobial activity of the compound: γ-bromo-δ-lactone 6 and δ-hydroxy-γ-lactone 8 were significantly stronger growth inhibitors of S. aureus and F. graminearum. In the case of the latter, a clear positive effect of the lactone function on the antifungal activity was also observed for γ-bromo-δ-lactone 5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。