Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293 cells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis

在 CHOK1 和 HEK293 细胞中设计瞬时和稳定过表达翻译因子 eIF3i 和 eIF3c,可增强细胞生长,同时增加 c-Myc 表达和重组蛋白合成

阅读:6
作者:Anne Roobol, Joanne Roobol, Matthew E Smith, Martin J Carden, John W B Hershey, Anne E Willis, C Mark Smales

Abstract

There is a desire to engineer mammalian host cell lines to improve cell growth/biomass accumulation and recombinant biopharmaceutical protein production in industrially relevant cell lines such as the CHOK1 and HEK293 cell lines. The over-expression of individual subunits of the eukaryotic translation factor eIF3 in mammalian cells has previously been shown to result in oncogenic properties being imparted on cells, including increased cell proliferation and growth and enhanced global protein synthesis rates. Here we report on the engineering of CHOK1 and HEK cells to over-express the eIF3i and eIF3c subunits of the eIF3 complex and the resultant impact on cell growth and a reporter of exogenous recombinant protein production. Transient over-expression of eIF3i in HEK293 and CHOK1 cells resulted in a modest increase in total eIF3i amounts (maximum 40% increase above control) and an approximate 10% increase in global protein synthesis rates in CHOK1 cells. Stable over-expression of eIF3i in CHOK1 cells was not achievable, most likely due to the already high levels of eIF3i in CHO cells compared to HEK293 cells, but was achieved in HEK293 cells. HEK293 cells engineered to over-express eIF3i had faster growth that was associated with increased c-Myc expression, achieved higher cell biomass and gave enhanced yields of a reporter of recombinant protein production. Whilst CHOK1 cells could not be engineered to over-express eIF3i directly, they could be engineered to over-express eIF3c, which resulted in a subsequent increase in eIF3i amounts and c-Myc expression. The CHOK1 eIF3c engineered cells grew to higher cell numbers and had enhanced cap- and IRES-dependent recombinant protein synthesis. Collectively these data show that engineering of subunits of the eIF3 complex can enhance cell growth and recombinant protein synthesis in mammalian cells in a cell specific manner that has implications for the engineering or selection of fast growing or high producing cells for production of recombinant proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。