GATA2‑miR‑374a axis promotes vascular smooth muscle cells proliferation, migration via targeting circTADA2A/RORA axis

GATA2‑miR‑374a 轴通过靶向 circTADA2A/RORA 轴促进血管平滑肌细胞增殖、迁移

阅读:6
作者:Wenxian Tu, Meina Feng, Qin Zhou, Yunfeng Wang, Mingye Wan, Danqun Gong, Jin Li, Yuanmin Du

Abstract

Evidence has shown that microRNAs (miRNAs/miRs) play key roles in biological functions of vascular smooth muscle cells (VSMCs). However, the role of miR-374a in VSMCs remains to be elucidated. The present study aimed to explore the influence of miR-374a on VSMCs and its molecular mechanism. The expression level of miR-374a was measured by reverse transcription-quantitative (RT-q) PCR. MTT and Transwell assay were employed to assess the role of miR-374a in proliferation and migration of VSMCs. To order to determine miR-374a targets, a dual-luciferase reporter assay was conducted, which was further verified by rescue experiments. Chromatin Immunoprecipitation Assay and JASPAR databases were applied to explore the regulatory association between GATA binding protein 2 (GATA2) and miR-374a. Western blotting or RT-qPCR were employed to detect the protein expression levels of GATA2 or RAR-related orphan receptor A (RORA). The present study found that miR-374a was elevated in VSMCs following treatment with platelet-derived growth factor-BB (PDGF-BB) compared with that in control group. In addition, the results demonstrated that a higher expression of a miR-374a could promote proliferation and migration of VSMCs while miR-374a inhibitor suppressed the PDGF-BB-induced proliferation and migration of VSMCs in vitro. Furthermore, circTADA2A bound to miR-374a and then upregulated RORA expression, which resulted in inhibition in VSMCs proliferation and migration. On the other hand, the result indicated that GATA2 overexpression could augment the proliferation, migration of PDGF-bb-induced VSMCs, which could be rescued by miR-374a inhibitor. The findings suggested that the GATA2/circTADA2A-miR-374a axis promoted the proliferation and migration of VSMCs by targeting RORA, which were closely related to atherosclerosis (AS). Thus the results might offer a new therapeutic target for AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。