Acid Sphingomyelinase Down-regulation Alleviates Vascular Endothelial Insulin Resistance in Diabetic Rats

酸性鞘磷脂酶下调减轻糖尿病大鼠血管内皮胰岛素抵抗

阅读:4
作者:Xin Li, Shi-Jie Jin, Jie Su, Xiao-Xue Li, Ming Xu

Abstract

Insulin resistance in endothelial cells contributes to the development of cardiovascular disease in patients with type 2 diabetes. Acid sphingomyelinase (ASM) is a soluble glycoprotein which plays a vital role in the development and progression of various diseases such as cardiovascular and metabolic diseases. However, it remains unknown if ASM regulates insulin resistance in vascular endothelial cells in type 2 diabetes. ASM down-regulation with gene silencing and selective inhibitor amitriptyline was used in the rat aortic endothelial cells (RAECs) treated with palmitic acid (PA), a common saturated free fatty acid, which is thought to be the major cause of insulin resistance. It was shown that ASM down-regulation increased glucose uptake and glucose transporter-4 (Glut4) expression and reversed the phosphorylation of pIRS-1-ser307 and AKT-ser473 via ceramide, consequently resulting in the decrease of the production of endothelial nitric oxide synthase (eNOS) and nitric oxide in PA-induced RAECs. We further found that ASM down-regulation blocked the Nox2- and Nox4-dependent superoxide (O2 -· ) generation, which regulated glucose metabolism in RAECs during PA stimulation. In vivo, amitriptyline relieved the vasodilatory response to acetylcholine and restored the level of ceramide, Nox2 and Nox4 in the aorta endothelium of high-fat diet-fed rats following an injection of streptozotocin. Taken together, these results suggest that ASM down-regulation can improve endothelial insulin resistance which is attributed to inhibiting redox signalling in RAECs. Thus, these data support the idea that ASM is a promising clinical biomarker and potential therapeutic target for diabetic vascular complication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。