Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides

阴离子取代和纳米限制对锂基复合氢化物离子电导率的综合影响

阅读:6
作者:Roman Zettl, Laura de Kort, Maria Gombotz, H Martin R Wilkening, Petra E de Jongh, Peter Ngene

Abstract

Solid-state electrolytes are crucial for the realization of safe and high capacity all-solid-state batteries. Lithium-containing complex hydrides represent a promising class of solid-state electrolytes, but they exhibit low ionic conductivities at room temperature. Ion substitution and nanoconfinement are the main strategies to overcome this challenge. Here, we report on the synthesis of nanoconfined anion-substituted complex hydrides in which the two strategies are effectively combined to achieve a profound increase in the ionic conductivities at ambient temperature. We show that the nanoconfinement of anion substituted LiBH4 (LiBH4-LiI and LiBH4-LiNH2) leads to an enhancement of the room temperature conductivity by a factor of 4 to 10 compared to nanoconfined LiBH4 and nonconfined LiBH4-LiI and LiBH4-LiNH2, concomitant with a lowered activation energy of 0.44 eV for Li-ion transport. Our work demonstrates that a combination of partial ion substitution and nanoconfinement is an effective strategy to boost the ionic conductivity of complex hydrides. The strategy could be applicable to other classes of solid-state electrolytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。