Pentosan polysulfate sodium promotes redifferentiation to the original phenotype in micromass-cultured canine articular chondrocytes and exerts molecular weight-dependent effects

戊聚糖多硫酸钠促进微团培养的犬关节软骨细胞向原始表型再分化并发挥分子量依赖性作用

阅读:5
作者:Yanlin Wang, Takafumi Sunaga, Carol Mwale, Ekkapol Akaraphutiporn, Sangho Kim, Masahiro Okumura

Abstract

Pentosan polysulfate sodium (PPS) is a heparin-like polysaccharide that is applied as a therapeutic treatment for osteoarthritis (OA) in animals. This study investigated the efficacy of different molecular weights PPS (1,500-7,000 Da) on the phenotype regulatory and chondrogenic properties of canine articular chondrocytes. The cytotoxicity of PPS on chondrocytes was assessed using flow cytometry and 3-(4,5-dimehylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. After 72 hr of exposure, PPS did not induce chondrocyte apoptosis, regardless of molecular weight. In addition, chondrogenic properties were determined according to the mRNA and protein levels in micromass-cultured chondrocytes. Quantitative polymerase chain reaction analysis confirmed that PPS promotes a chondrogenic phenotype in chondrocytes in a molecular weight-dependent manner, with significant upregulation of collagen type II alpha 1 chain, aggrecan, and SRY-box transcription factor 9 (SOX9) mRNA levels relative to those in the control. However, the collagen type I alpha 2 chain mRNA level simultaneously increased after 7,000 Da PPS treatment. PPS exposure also increased collagen type II and SOX9 protein production in a molecular weight-dependent manner and inhibited Akt phosphorylation in chondrocytes. Alcian blue staining indicated that PPS treatment enhanced proteoglycan deposition in micromass cultures, with stronger effects observed in 5,000 and 7,000 Da groups. Overall, these results indicate that PPS exerts protective effects on the chondrocyte phenotype and may represent a potential therapeutic target for OA treatment. Increasing the molecular weight of PPS could enhance these anabolic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。