Synergistic effect of Tripterygium glycosides and cisplatin on drug-resistant human epithelial ovarian cancer via ILK/GSK3β/Slug signal pathway

雷公藤多苷与顺铂通过ILK/GSK3β/Slug信号通路协同作用对抗耐药人上皮性卵巢癌

阅读:6
作者:Yayuan Yu, Wencheng Liu, Xinlu Zhan, Yanying Zhong, Ying Feng, Qing Cao, Buzhen Tan

Abstract

The side-effects of therapeutic drugs and the intrinsic or acquired cisplation resistance are considered impediments in the clinic treatment of human epithelial ovarian cancer, which contribute heavily to the startlingly high mortality. It is imperative to look for drugs to inhibit cancer and minimize the chemotherapy resistance safely and effectively from the Chinese herbal medicine. In the present study, we evaluated the anti-cancer effect of Tripterygium glycosides (GTW) and its sensitizing effect with cisplation (DDP) both in vitro and in vivo. The 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay, transwell assay, and scratch wound healing assay demonstrated that GTW and DDP+GTW prominently inhibited the proliferation, migration, and invasion of SKOV3/DDP cells. In addition, treatment using GTW and DDP+GTW for 24 h significantly decreased the expression of ILK, p-AKT, p-GSK3β, N-Cadherin, and Slug, and markedly enhanced the expression of E-cadherin. Moreover, animal results confirmed that GTW and DDP+GTW significantly inhibited the tumor volume, increased the apoptosis of tumors cells and reduced the production of tumor markers CA125 and HE4 in mice serum. Similar to the results in vitro, GTW and DDP+GTW significantly inhibited the expression of proteins in epithelial-mesenchymal transition (EMT) and ILK/GSK3β/Slug signal pathway in tumors in vivo. In conclusion, our results indicated that GTW may be served as a potential therapeutic drug combination with DDP to treat drug resistant ovarian cancer via regulating ILK/GSK3β/Slug signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。