Low-power microelectronics embedded in live jellyfish enhance propulsion

嵌入活水母的低功耗微电子器件增强推进力

阅读:5
作者:Nicole W Xu, John O Dabiri

Abstract

Artificial control of animal locomotion has the potential to simultaneously address longstanding challenges to actuation, control, and power requirements in soft robotics. Robotic manipulation of locomotion can also address previously inaccessible questions about organismal biology otherwise limited to observations of naturally occurring behaviors. Here, we present a biohybrid robot that uses onboard microelectronics to induce swimming in live jellyfish. Measurements demonstrate that propulsion can be substantially enhanced by driving body contractions at an optimal frequency range faster than natural behavior. Swimming speed can be enhanced nearly threefold, with only a twofold increase in metabolic expenditure of the animal and 10 mW of external power input to the microelectronics. Thus, this biohybrid robot uses 10 to 1000 times less external power per mass than other aquatic robots reported in literature. This capability can expand the performance envelope of biohybrid robots relative to natural animals for applications such as ocean monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。