A critical role of the KCa 3.1 channel in mechanical stretch-induced proliferation of rat bone marrow-derived mesenchymal stem cells

KCa 3.1 通道在机械拉伸诱导大鼠骨髓间充质干细胞增殖中的关键作用

阅读:10
作者:Xiaoling Jia, Hao Su, Xinlan Chen, Yangbi Huang, Yufan Zheng, Pei Ji, Chao Gao, Xianghui Gong, Yan Huang, Lin-Hua Jiang, Yubo Fan

Abstract

Mechanical stimulation is an important factor regulating mesenchymal stem cell (MSC) functions such as proliferation. The Ca2+ -activated K+ channel, KCa 3.1, is critically engaged in MSC proliferation but its role in mechanical regulation of MSC proliferation remains unknown. Here, we examined the KCa 3.1 channel expression and its role in rat bone marrow-derived MSC (BMSC) proliferation in response to mechanical stretch. Application of mechanical stretch stimulated BMSC proliferation via promoting cell cycle progression. Such mechanical stimulation up-regulated the KCa 3.1 channel expression and pharmacological or genetic inhibition of the KCa 3.1 channel strongly suppressed stretch-induced increase in cell proliferation and cell cycle progression. These results support that the KCa 3.1 channel plays an important role in transducing mechanical forces to MSC proliferation. Our finding provides new mechanistic insights into how mechanical stimuli regulate MSC proliferation and also a viable bioengineering approach to improve MSC proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。