Multi-method assessment of PVP-coated silver nanoparticles and artificial sweat mixtures

PVP 包覆银纳米粒子与人工汗液混合物的多方法评估

阅读:6
作者:Derek M Peloquin, Eric J Baumann Jr, Todd P Luxton

Abstract

Research presented here utilizes silver nanoparticles (AgNPs) as a case study for how the immediate local environment alters the physical and chemical properties of nanomaterials. Dermal exposure is a primary route for exposure to many of the consumer products containing AgNPs. Interactions between AgNPs and human sweat/perspiration are critical for understanding how changes in Ag speciation will impact exposure. Previous studies have examined silver release from AgNP-containing products after exposure to artificial sweat (AS), however there is no basic assessment of how mixtures of AgNPs and AS alter the physical and chemical properties of AgNPs. The current research evaluated changes in size, aggregation, chemical composition, and silver speciation of four different sizes of AgNPs exposed to four different formulations of AS. The AS formulations were from standardized methods with different chemical compositions, ionic strengths, and pH. Samples were collected at four-time intervals for analysis using dynamic light scattering , UV-Vis spectroscopy, and single-particle inductively coupled plasma-mass spectrometry . Each mixture was also prepared for speciation analysis using X-ray absorption spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray analysis. The equivalent diameter measurements from the three techniques followed the order of DLS > UV-Vis > spICP-MS. Speciation analyses indicate significant changes for the smaller NPs, while the largest (100 nm) NPs had less measurable differences. This study shows the need to fully understand what specific information an analytical technique might provide and to use those techniques properly in tandem to give the fullest answer to a given research question.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。