Optimizing tissue clearing and imaging methods for human brain tissue

优化人类脑组织的组织透明化和成像方法

阅读:8
作者:Min Sun Kim, Jang Ho Ahn, Ji Eun Mo, Ha Young Song, Deokhyeon Cheon, Seong Ho Yoo, Hyung Jin Choi

Conclusions

We present optimized sample preparation and staining protocols for the visualization of three-dimensional macrostructure in the human brain.

Methods

Fresh and cadaver samples were cleared using X-CLARITY™. Clearing efficiency and artifact levels were calculated using ImageJ, and antibody staining efficiency was evaluated after confocal microscopy imaging. Three staining methods were compared: 4-day staining (4DS), 11-day staining (11DS), and 4-day staining with a commercial kit (4DS-C). The optimum staining method was then selected by evaluating staining time, depth, method complexity, contamination, and cost.

Results

Fresh samples outperformed cadaver samples in terms of the time and quality of clearing, artifacts, and 4',6-diamidino-2-phenylindole (DAPI) staining efficiency, but had a glial fibrillary acidic protein (GFAP) staining efficiency that was similar to that of cadaver samples. The penetration depth and DAPI staining improved in fresh samples as the incubation period lengthened. 4DS-C was the best method, with the deepest penetration. Human brain images containing blood vessels, cell nuclei, and astrocytes were visualized three-dimensionally. The chemical dye staining depth reached 800 µm and immunostaining depth exceeded 200 µm in 4 days. Conclusions: We present optimized sample preparation and staining protocols for the visualization of three-dimensional macrostructure in the human brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。