Selective aptamer conjugation to silver-coated magnetite nanoparticles for magnetic solid-phase extraction of trace amounts of Pb2+ ions

选择性适体结合银包覆磁铁矿纳米粒子用于痕量 Pb2+ 离子的磁性固相萃取

阅读:9
作者:Sara Rahnama, Shahab Shariati, Faten Divsar

Abstract

Herein, a novel aptamer-functionalized magnetic adsorbent was developed and combined with magnetic solid-phase extraction (MSPE) for the specific enrichment of Pb2+ ions prior to flame atomic absorption spectrometric detection. First, silver-coated magnetite core-shell nanoparticles (Fe3O4@Ag MNPs) were synthesized by the chemical reduction of silver ions on the surface of magnetite nanoparticles. After that, the selective DNA aptamer against Pb2+ was conjugated on the surface of the synthesized nanoparticles to form aptamer-modified magnetic nanoparticles (Fe3O4@Ag-APT). The characterization of the prepared adsorbent was performed through SEM imaging, XRD, FT-IR, EDX, and DRS instruments. The influence of the various experimental parameters on the adsorption and desorption steps in MSPE was investigated via Taguchi experimental design to optimize different parameters. Under the optimized conditions, the Pb2+ calibration graph was linear in the range of 33-1000 μg L-1. The relative standard deviation (RSD%) of the method for six replicates containing 100 μg L-1 of Pb2+ ions was 0.34%. Furthermore, the limit of detection (LOD) and the limit of quantification (LOQ) were 10 μg L-1 and 33.3 μg L-1, respectively. Finally, the applicability of the proposed method was successfully confirmed by preconcentration and determination of trace amounts of Pb2+ ions in tap and seawater samples. We showed a proof of concept for Fe3O4@Ag-APT as an efficient bio-adsorbent, offering a promising strategy for the specific binding/removal of toxic heavy metal ions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。