The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles

毫米波对大型和巨型单层囊泡物理特性的影响

阅读:10
作者:Katia Cosentino, Amerigo Beneduci, Alfonsina Ramundo-Orlando, Giuseppe Chidichimo

Abstract

Exposure of cell membranes to an electromagnetic field (EMF) in the millimeter wave band (30-300 GHz) can produce a variety of responses. Further, many of the vibrational modes in complex biomolecules fall in the 1-100 GHz range. In addition to fundamental scientific interest, this may have applications in the development of diagnostic and therapeutic medical applications. In the present work, lipid vesicles of different size were used to study the effects of exposure to radiation at 52-72 GHz, with incident power densities (IPD) of 0.0035-0.010 mW/cm(2), on the chemical-physical properties of cell membranes. Large unilamellar vesicles (LUVs) were used to study the effect of the radiation on the physical stability of vesicles by dynamic light scattering. An inhibition of the aging processes (Ostwald ripening), which usually occur in these vesicles because of their thermodynamic instability, resulted. Giant unilamellar vesicles (GUVs) were used to study the effect of the radiation on membrane water permeability under osmotic stress by phase contrast microscopy. In this case, a decrease in the water membrane permeability of the irradiated samples was observed. We advance the hypothesis that both the above effects may be explained in terms of a change of the polarization states of water induced by the radiation, which causes a partial dehydration of the membrane and consequently a greater packing density (increased membrane rigidity).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。