The homeostasis-maintaining metabolites from bacterial stress response to bacteriophage infection suppress tumor metastasis

细菌应激反应中维持稳态的代谢物对噬菌体感染有抑制肿瘤转移的作用

阅读:12
作者:Tianliang He, Min Jin, Chenxi Xu, Zhongjun Ma, Fufang Wu, Xiaobo Zhang

Abstract

The antiviral metabolites from bacterial stress response to bacteriophage infection can maintain homeostasis of host cells, while metabolism disorder is a remarkable characteristic of tumorigenesis. In the aspect of metabolic homeostasis, therefore, the antiviral homeostasis-maintaining metabolites of bacteria may possess anti-tumor activity. However, this issue has not been addressed. Here we show that the homeostasis-challenged maintaining metabolites from deep-sea bacteriophage-challenged thermophile can suppress tumor metastasis. The results indicated that the metabolic profiles of the bacteriophage GVE2-infected and virus-free thermophile Geobacillus sp. E263 from a deep-sea hydrothermal vent were remarkably different. Thirteen metabolites were significantly elevated and two metabolites were downregulated in thermophile stress response to GVE2 infection. As an example, the upregulated L-norleucine was characterized. The data showed that L-norleucine had antiviral activity in thermophile. Furthermore, the in vitro and in vivo assays revealed that L-norleucine, as well as its derivative, significantly suppressed metastasis of gastric and breast cancer cells. L-norleucine interacted with hnRNPA2/B1 protein to inhibit the expressions of Twist1 and Snail, two inhibitors of E-cadherin, and promote the E-cadherin expression, leading to the inhibition of tumor metastasis. Therefore, our study presented that antiviral homeostasis-maintaining metabolites of microbes might be a promising source for anti-tumor drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。