Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex

可卡因和习惯训练导致前边缘皮层树突棘重排

阅读:7
作者:Michelle K Sequeira, Andrew M Swanson, Henry W Kietzman, Shannon L Gourley

Abstract

Successfully navigating dynamic environments requires organisms to learn the consequences of their actions. The prelimbic prefrontal cortex (PL) formulates action-consequence memories and is modulated by addictive drugs like cocaine. We trained mice to obtain food rewards and then unexpectedly withheld reinforcement, triggering new action-consequence memory. New memory was disrupted by cocaine when delivered immediately following non-reinforcement, but not when delayed, suggesting that cocaine disrupted memory consolidation. Cocaine also rapidly inactivated cofilin, a primary regulator of the neuronal actin cytoskeleton. This observation led to the discovery that cocaine also within the time of memory consolidation elevated dendritic spine elimination and blunted spine formation rates on excitatory PL neurons, culminating in thin-type spine attrition. Training drug-naive mice to utilize inflexible response strategies also eliminated thin-type dendritic spines. Thus, cocaine may disrupt action-consequence memory, at least in part, by recapitulating neurobiological sequalae occurring in the formation of inflexible habits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。