HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine

HDAC8 催化长链脂肪酰基赖氨酸的水解

阅读:4
作者:Pornpun Aramsangtienchai, Nicole A Spiegelman, Bin He, Seth P Miller, Lunzhi Dai, Yingming Zhao, Hening Lin

Abstract

The histone deacetylase (HDAC) family regulates many biological pathways through the deacetylation of lysine residues on histone and nonhistone proteins. Mammals have 18 HDACs that are classified into four classes. Class I, II, and IV are zinc-dependent, while class III is nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase or sirtuins. HDAC8, a class I HDAC family member, has been shown to have low deacetylation activity compared to other HDACs in vitro. Recent studies showed that several sirtuins, with low deacetylase activities, can actually hydrolyze other acyl lysine modifications more efficiently. Inspired by this, we tested the activity of HDAC8 using a variety of different acyl lysine peptides. Screening a panel of peptides with different acyl lysine modifications, we found that HDAC8 can catalyze the removal of acyl groups with 2-16 carbons from lysine 9 of the histone H3 peptide (H3K9). Interestingly, the catalytic efficiencies (kcat/Km) of HDAC8 on octanoyl, dodecanoyl, and myristoyl lysine are several-fold better than that on acetyl lysine. The increased catalytic efficiencies of HDAC8 on larger fatty acyl groups are due to the much lower Km values. T-cell leukemia Jurkat cells treated with a HDAC8 specific inhibitor, PCI-34051, exhibited an increase in global fatty acylation compared to control treatment. Thus, the de-fatty-acylation activity of HDAC8 is likely physiologically relevant. This is the first report of a zinc-dependent HDAC with de-fatty-acylation activity, and identification of HDAC8 de-fatty-acylation targets will help to further understand the function of HDAC8 and protein lysine fatty acylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。