Expression of the axon-guidance protein receptor Neuropilin 1 is increased in the spinal cord and decreased in muscle of a mouse model of amyotrophic lateral sclerosis

在肌萎缩侧索硬化症小鼠模型中,轴突导向蛋白受体神经纤毛蛋白 1 的表达在脊髓中增加,而在肌肉中减少

阅读:5
作者:Sonja Körner, Nadine Thau-Habermann, Ekaterini Kefalakes, Franziska Bursch, Susanne Petri

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a degenerative motor neuron disorder. It is supposed that ALS is at least in part an axonopathy. Neuropilin 1 is an important receptor of the axon repellent Semaphorin 3A and a co-receptor of vascular endothelial growth factor. It is probably involved in neuronal and axonal de-/regeneration and might be of high relevance for ALS pathogenesis and/or disease progression. To elucidate whether the expression of either Neuropilin1 or Semaphorin3A is altered in ALS we investigated these proteins in human brain, spinal cord and muscle tissue of ALS-patients and controls as well as transgenic SOD1G93A and control mice. Neuropilin1 and Semaphorin3A gene and protein expression were assessed by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. Groups were compared using either Student t-test or Mann-Whitney U test. We observed a consistent increase of Neuropilin1 expression in the spinal cord and decrease of Neuropilin1 and Semaphorin3A in muscle tissue of transgenic SOD1G93A mice at the mRNA and protein level. Previous studies have shown that damage of neurons physiologically causes Neuropilin1 and Semaphorin3A increase in the central nervous system and decrease in the peripheral nervous system. Our results indicate that this also occurs in ALS. Pharmacological modulation of expression and function of axon repellents could be a promising future therapeutic option in ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。