Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model

聚乙二醇/聚己内酯水凝胶中耳软骨细胞的培养及其在兔气管软骨组织工程中的应用

阅读:5
作者:C S Chang #, C Y Yang #, H Y Hsiao, L Chen, I M Chu, M H Cheng, C H Tsao

Abstract

Tissue engineering has the potential to overcome the limitations of tracheal reconstruction. To tissue-engineer a tracheal cartilage, auricular chondrocytes were encapsulated in a photocurable poly(ethylene glycol)/poly(ε-caprolactone) (PEG/PCL) hydrogel. Chondrogenic genes, including Sox9, Acan and Col2a1, were up-regulated in auricular chondrocytes after 2 weeks of in vitro cultivation in the PEG/PCL hydrogel. Co-cultivation of 70 % auricular chondrocytes and 30 % bone marrow mesenchymal stem cells (BMSCs) accelerated the chondrogenic genes' expression in the PEG/PCL hydrogel. Cartilaginous matrix markers, including proteoglycans and collagen type II, were detected in the chondrocytes-encapsulated PEG/PCL hydrogel after 4 weeks of in vitro cultivation. The higher expression level of cartilaginous matrix markers was observed in the PEG/PCL hydrogel with co-cultivation of 70 % chondrocytes and 30 % BMSCs. After 4 weeks of ectopic cultivation in rabbits, the cylindrical PEG/PCL structure was sustained with the use of a luminal silicon stent. However, without the stent, the construct collapsed under a compression force. No fibrosis or vessel ingrowth were found in the PEG/PCL hydrogel after 4 weeks of ectopic cultivation, whereas the auricular chondrocytes showed proteoglycans' accumulation and collagen type II production. Rabbit auricular chondrocytes could survive and retain chondrogenic ability in the PEG/PCL hydrogel under both in vitro and in vivo conditions. While the PEG/PCL hydrogel did not show sufficient mechanical properties for supporting the cylindrical shape of the construct, the high chondrogenesis level of chondrocytes in the PEG/PCL hydrogel displayed the potential of this material for tracheal tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。