Cross-repressive interactions between Lrig3 and netrin 1 shape the architecture of the inner ear

Lrig3 和 netrin 1 之间的交叉抑制相互作用塑造了内耳的结构

阅读:4
作者:Victoria E Abraira, Tony Del Rio, Andrew F Tucker, John Slonimsky, Hannah L Keirnes, Lisa V Goodrich

Abstract

The sense of balance depends on the intricate architecture of the inner ear, which contains three semicircular canals used to detect motion of the head in space. Changes in the shape of even one canal cause drastic behavioral deficits, highlighting the need to understand the cellular and molecular events that ensure perfect formation of this precise structure. During development, the canals are sculpted from pouches that grow out of a simple ball of epithelium, the otic vesicle. A key event is the fusion of two opposing epithelial walls in the center of each pouch, thereby creating a hollow canal. During the course of a gene trap mutagenesis screen to find new genes required for canal morphogenesis, we discovered that the Ig superfamily protein Lrig3 is necessary for lateral canal development. We show that this phenotype is due to ectopic expression of the axon guidance molecule netrin 1 (Ntn1), which regulates basal lamina integrity in the fusion plate. Through a series of genetic experiments, we show that mutually antagonistic interactions between Lrig3 and Ntn1 create complementary expression domains that define the future shape of the lateral canal. Remarkably, removal of one copy of Ntn1 from Lrig3 mutants rescues both the circling behavior and the canal malformation. Thus, the Lrig3/Ntn1 feedback loop dictates when and where basement membrane breakdown occurs during canal development, revealing a new mechanism of complex tissue morphogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。