MT-102 prevents tissue wasting and improves survival in a rat model of severe cancer cachexia

MT-102 可预防组织萎缩并提高严重癌症恶病质大鼠模型的生存率

阅读:9
作者:Mareike S Pötsch, Junichi Ishida, Sandra Palus, Anika Tschirner, Stephan von Haehling, Wolfram Doehner, Stefan D Anker, Jochen Springer

Background

Cachexia, a common manifestation of malignant cancer, is associated with wasting of skeletal muscle and fat tissue. In this study, we investigated the effects of a new first in class anabolic catabolic transforming agent on skeletal muscle in a rat model of cancer cachexia.

Conclusions

The present study shows that 3 mg kg-1 MT-102 reduces catabolism, while inducing anabolism in skeletal muscle leading to an improved survival.

Methods

Young male Wistar Han rats were intraperitoneally inoculated with 108 Yoshida hepatoma AH-130 cells and once daily treated with 0.3 mg kg-1 , 3 mg kg-1 MT-102, or placebo by gavage.

Results

Three mg kg-1 d-1 MT-102 not only prevented progressive loss of fat mass (-6 ± 2 g vs -12 ± 1 g; P < 0.001); lean mass (+1 ± 10 g vs. -37 ± 2 g; P < 0.001) and body weight (+1 ± 13 g vs. -60 ± 2 g; P < 0.001) were remained. Quality of life was also improved as indicated by a higher food intake 12.9 ± 3.1 g and 4.3 ± 0.5 g, 3 mg kg-1 d-1 MT-102 vs. placebo, respectively, P < 0.001) and a higher spontaneous activity (52 369 ± 6521 counts/24 h and 29 509 ± 1775 counts/24 h, 3 mg·kg-1 d-1 MT-102 vs. placebo, respectively, P < 0.01) on Day 11. Most importantly, survival was improved (HR = 0.29; 95% CI: 0.16-0.51, P < 0.001). The molecular mechanisms behind these effects involve reduction of overall protein degradation and activation of protein synthesis, assessed by measurement of proteasome and caspase-6 activity or Western blot analysis, respectively. Conclusions: The present study shows that 3 mg kg-1 MT-102 reduces catabolism, while inducing anabolism in skeletal muscle leading to an improved survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。