Role of DJ-1 in Modulating Glycative Stress in Heart Failure

DJ-1 在调节心力衰竭糖原应激中的作用

阅读:5
作者:Yuuki Shimizu, Chad K Nicholson, Rohini Polavarapu, Yvanna Pantner, Ahsan Husain, Nawazish Naqvi, Lih-Shen Chin, Lian Li, John W Calvert

Abstract

Background DJ-1 is a ubiquitously expressed protein typically associated with the development of early onset Parkinson disease. Recent data suggest that it also plays a role in the cellular response to stress. Here, we sought to determine the role DJ-1 plays in the development of heart failure. Methods and Results Initial studies found that DJ-1 deficient mice (DJ-1 knockout; male; 8-10 weeks of age) exhibited more severe left ventricular cavity dilatation, cardiac dysfunction, hypertrophy, and fibrosis in the setting of ischemia-reperfusion-induced heart failure when compared with wild-type littermates. In contrast, the overexpression of the active form of DJ-1 using a viral vector approach resulted in significant improvements in the severity of heart failure when compared with mice treated with a control virus. Subsequent studies aimed at evaluating the underlying protective mechanisms found that cardiac DJ-1 reduces the accumulation of advanced glycation end products and activation of the receptor for advanced glycation end products-thus, reducing glycative stress. Conclusions These results indicate that DJ-1 is an endogenous cytoprotective protein that protects against the development of ischemia-reperfusion-induced heart failure by reducing glycative stress. Our findings also demonstrate the feasibility of using a gene therapy approach to deliver the active form of DJ-1 to the heart as a therapeutic strategy to protect against the consequences of ischemic injury, which is a major cause of death in western populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。