ADAM metallopeptidase domain 10 knockdown enables podocytes to resist high glucose stimulation by inhibiting pyroptosis via MAPK pathway

ADAM 金属肽酶结构域 10 敲低使足细胞能够通过 MAPK 通路抑制细胞焦亡,抵抗高糖刺激

阅读:5
作者:Chunjie Sui, Dan Zhou

Abstract

Diabetic nephropathy (DN) is a common severe microvascular complication of diabetes mellitus, and podocyte damage occurs in the early stages of DN. The urine of patients with various types of glomerular disease presents increased levels of ADAM metallopeptidase domain 10 (ADAM10). The present study aimed to explore the role of ADAM10 in podocyte damage. Therefore, the expression of ADAM10 in high glucose (HG)-stimulated podocytes was measured by reverse transcription-qPCR and western blot. Moreover, the effects of ADAM10 knockdown on podocyte inflammation and apoptosis were determined by ELISA, western blot and TUNEL assay after confirming the efficacy of cell transfection. Subsequently, the effects of ADAM10 knockdown on the MAPK pathway and pyroptosis were assessed by western blot. Through performing the aforementioned experiments, the role of the MAPK pathway in the regulatory effects of ADAM10 was then investigated by pretreating podocytes with pathway agonists. ADAM10 expression was upregulated in HG-stimulated podocytes, while ADAM10 knockdown suppressed inflammation, apoptosis and pyroptosis of HG-stimulated podocytes and inhibited the activation of the MAPK signaling pathway. However, when podocytes were pretreated with pathway agonists (LM22B-10 or p79350), the aforementioned effects of ADAM10 knockdown were suppressed. The present study demonstrated that ADAM10 knockdown suppressed the inflammation, apoptosis and pyroptosis of HG-stimulated podocytes by blocking the MAPK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。