EPRS1 Controls the TGF- β Signaling Pathway via Interaction with TβRI in Hepatic Stellate Cell

EPRS1通过与肝星状细胞中的TβRI相互作用来调控TGF-β信号通路。

阅读:2
作者:Ina Yoon ,Ji Ae Song ,Ji Hun Suh ,Sulhee Kim ,Jonghyeon Son ,Jong Hyun Kim ,Song Yee Jang ,Kwang Yeon Hwang ,Myung Hee Kim ,Sunghoon Kim

Abstract

Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is known to associated with fibrosis through its catalytic activity to produce prolyl-tRNA. Although its catalytic inhibitor halofuginone (HF) has been known to inhibit the TGF-β pathway as well as to reduce prolyl-tRNA production for the control of fibrosis, the underlying mechanism how EPRS1 regulates the TGF-β pathway was not fully understood. Here, we show a noncatalytic function of EPRS1 in controlling the TGF-β pathway and hepatic stellate cell activation via its interaction with TGF-β receptor I (TβRI). Upon stimulation with TGF-β, EPRS1 is phosphorylated by TGF-β-activated kinase 1 (TAK1), leading to its dissociation from the multi-tRNA synthetase complex and subsequent binding with TβRI. This interaction increases the association of TβRI with SMAD2/3 while decreases that of TβRI with SMAD7. Accordingly, EPRS1 stabilizes TβRI by preventing the ubiquitin-mediated degradation of TβRI. HF disrupts the interaction between EPRS1 and TβRI, and reduces TβRI protein levels, leading to inhibition of the TGF-β pathway. In conclusion, this work suggests the novel function of EPRS1 involved in the development of fibrosis by regulating the TGF-β pathway and the antifibrotic effects of HF by controlling both of EPRS1 functions. Keywords: glutamyl-prolyl-tRNA synthetase 1; halofuginone; transforming growth factor receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。